论文标题
具有各向异性重量的非线性椭圆和抛物线方程的局部规律性
Local regularity for nonlinear elliptic and parabolic equations with anisotropic weights
论文作者
论文摘要
本文的主要目的是捕获针对一类非线性椭圆和抛物线方程的解决方案的渐近行为,其各向异性权重由两个功率类型的重量组成,这些权力是在退化点附近或奇异点附近的不同尺寸的两个功率类型重量组成的,尤其是加权$ p $ - $ P $ - 单线方程和加权加权方程。结果,我们还建立了在有单个功率型重量的情况下为其解决方案的本地赫德估计。
The main purpose of this paper is to capture the asymptotic behavior for solutions to a class of nonlinear elliptic and parabolic equations with the anisotropic weights consisting of two power-type weights of different dimensions near the degenerate or singular point, especially covering the weighted $p$-Laplace equations and weighted fast diffusion equations. As a consequence, we also establish the local Hölder estimates for their solutions in the presence of single power-type weights.