论文标题
用H-BN/石墨烯/MOS2的伽马 - 基因的多功能范德华异质结构
Versatile van der Waals Heterostructures of Gamma-GeSe with h-BN/Graphene/MoS2
论文作者
论文摘要
最近发现的新型GESE(Gamma-gese)的新型六边形阶段引发了人们对纳米电子应用的极大兴趣,因为其散装相的电导率甚至高于石墨,而其单层是半导体。对于潜在的应用,构建功能性二维(2D)触点是必不可少的。在此,通过第一原理计算,我们提出了与石墨烯,2D H-BN和MOS2分别接触的伽玛 - 基因的范德华异质结构(VDWHS),作为金属,绝缘子和半导体伴侣的代表。我们的工作表明,H-BN或石墨烯层将电子捐赠给伽马 - - 层,导致gamma-engese掺杂,而MOS2层则接受来自γ------------------层的电子,从而导致后者的P掺杂。伽马角/BN异质结构具有带有大带偏移的I型带对齐方式,这表明BN可以用作有效的钝化层,以保护伽玛 - 基因在维持其主要电子和光学特性的同时,以保护其环境干扰。对于伽马语/石墨烯异质结构,很容易具有非常低的屏障至数十MEV,很容易通过热激发来克服,这可以通过应变和外部电场来调节。 Gamma-gese/MOS2 VDWH形成Z-Scheme界面,这对载体分裂和光子利用非常有益。我们的工作表明,BN可以很好地被伽玛 - 基地,并与石墨烯建立亲密接触以获得高电荷注入效率,并与MOS2进行有效的载体分裂以进行氧化还原反应。
Recent discovery of a novel hexagonal phase of GeSe (Gamma-GeSe) has triggered great interests in nanoelectronics applications owing to its electrical conductivity of bulk phase even higher than graphite while its monolayer is a semiconductor. For potential applications, construction of functional two-dimensional (2D) contacts is indispensable. Herein, via first-principles calculations, we propose the design of van der Waals heterostructures (vdWHs) of Gamma-GeSe contacting respectively with graphene, 2D h-BN and MoS2, as representatives of metallic, insulator, and semiconductor partners. Our work shows that the h-BN or graphene layer donates electrons to the Gamma-GeSe layer, resulting in n doping in Gamma-GeSe, while the MoS2 layer accepts electrons from the Gamma-GeSe layer leading to p doping of the latter. The Gamma-GeSe/BN heterostructure has a type-I band alignment with large band offsets, indicating that BN can be used as an effective passivating layer to protect Gamma-GeSe from its environmental disturbance while maintaining its major electronic and optical characteristics. For Gamma-GeSe/graphene heterostructure, it is prone to have a very low-Schottky barrier down to tens of meV, easily overcome by thermal excitation, which can be tunable by strain and external electric field. The Gamma-GeSe/MoS2 vdWH forms a Z-scheme interface, which is beneficial for carriers splitting and photon utilization. Our work indicates that Gamma-GeSe can be well passivated by BN, and form intimate contact with graphene for high charge injection efficiency and with MoS2 for efficient carriers splitting for redox reactions.