论文标题

置换量子量子神经网络的理论保证

Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks

论文作者

Schatzki, Louis, Larocca, Martin, Nguyen, Quynh T., Sauvage, Frederic, Cerezo, M.

论文摘要

尽管有量子机学习模型的巨大希望,但在释放其全部潜力之前,必须克服一些挑战。例如,基于量子神经网络(QNN)的模型可能会在其训练景观中遭受过多的局部最小值和贫瘠的高原。最近,几何量子机学习(GQML)的新生领域已成为对其中一些问题的潜在解决方案。 GQML的关键见解是,应该设计诸如Equivariant QNN之类的体系结构,编码手头问题的对称性。在这里,我们专注于置换对称性的问题(即对称$ s_n $),并展示如何构建$ s_n $ equivariant qnns。我们提供了对其性能的分析研究,证明他们不会遭受贫瘠的高原,迅速达到过度参数,并从少量数据中概括了。为了验证我们的结果,我们为图状态分类任务执行数值模拟。我们的工作为QNN提供了第一个理论保证,因此表明了GQML的极端力量和潜力。

Despite the great promise of quantum machine learning models, there are several challenges one must overcome before unlocking their full potential. For instance, models based on quantum neural networks (QNNs) can suffer from excessive local minima and barren plateaus in their training landscapes. Recently, the nascent field of geometric quantum machine learning (GQML) has emerged as a potential solution to some of those issues. The key insight of GQML is that one should design architectures, such as equivariant QNNs, encoding the symmetries of the problem at hand. Here, we focus on problems with permutation symmetry (i.e., the group of symmetry $S_n$), and show how to build $S_n$-equivariant QNNs. We provide an analytical study of their performance, proving that they do not suffer from barren plateaus, quickly reach overparametrization, and generalize well from small amounts of data. To verify our results, we perform numerical simulations for a graph state classification task. Our work provides the first theoretical guarantees for equivariant QNNs, thus indicating the extreme power and potential of GQML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源