论文标题
稳健单眼估计的分层归一化
Hierarchical Normalization for Robust Monocular Depth Estimation
论文作者
论文摘要
在本文中,我们通过深度神经网络解决了单眼深度估计。为了培训具有各种数据集来源的深层单眼估计模型,最新方法采用图像级别的归一化策略来产生仿射不变的深度表示。但是,使用图像级归一化的学习主要强调像素表示与图像中的全局统计量的关系,例如场景的结构,而细粒度的深度差异可能会被忽略。在本文中,我们提出了一种新型的多尺度深度归一化方法,该方法基于空间信息和深度分布从层次上归一化的深度表示。与以前仅在整体图像水平上应用的归一化策略相比,提出的分层归一化可以有效地保留细粒细节并提高准确性。我们提出了两种策略,分别定义了深度领域和空间域中的层次归一化环境。我们的广泛实验表明,提出的归一化策略明显胜过先前的归一化方法,我们在五个零弹性传输基准数据集上设置了新的最新方法。
In this paper, we address monocular depth estimation with deep neural networks. To enable training of deep monocular estimation models with various sources of datasets, state-of-the-art methods adopt image-level normalization strategies to generate affine-invariant depth representations. However, learning with image-level normalization mainly emphasizes the relations of pixel representations with the global statistic in the images, such as the structure of the scene, while the fine-grained depth difference may be overlooked. In this paper, we propose a novel multi-scale depth normalization method that hierarchically normalizes the depth representations based on spatial information and depth distributions. Compared with previous normalization strategies applied only at the holistic image level, the proposed hierarchical normalization can effectively preserve the fine-grained details and improve accuracy. We present two strategies that define the hierarchical normalization contexts in the depth domain and the spatial domain, respectively. Our extensive experiments show that the proposed normalization strategy remarkably outperforms previous normalization methods, and we set new state-of-the-art on five zero-shot transfer benchmark datasets.