论文标题
部分可观测时空混沌系统的无模型预测
Convergence Analysis of Volumetric Stretch Energy Minimization and its Associated Optimal Mass Transport
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The volumetric stretch energy has been widely applied to the computation of volume-/mass-preserving parameterizations of simply connected tetrahedral mesh models. However, this approach still lacks theoretical support. In this paper, we provide the theoretical foundation for volumetric stretch energy minimization (VSEM) to compute volume-/mass-preserving parameterizations. In addition, we develop an associated efficient VSEM algorithm with guaranteed asymptotic R-linear convergence. Furthermore, based on the VSEM algorithm, we propose a projected gradient method for the computation of the volume/mass-preserving optimal mass transport map with a guaranteed convergence rate of $\mathcal{O}(1/m)$, and combined with Nesterov-based acceleration, the guaranteed convergence rate becomes $\mathcal{O}(1/m^2)$. Numerical experiments are presented to justify the theoretical convergence behavior for various examples drawn from known benchmark models. Moreover, these numerical experiments show the effectiveness and accuracy of the proposed algorithm, particularly in the processing of 3D medical MRI brain images.