论文标题
自磨碎的旋转宇宙等离子体中的磁性水力动力学不稳定性
Magnetohydrodynamic instabilities in a self-gravitating rotating cosmic plasma
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The generation of magnetohydrodynamic (MHD) waves and their instabilities are studied in galactic gaseous rotating plasmas with the effects of the magnetic field, the self gravity, the diffusion-convection of cosmic rays as well as the gas and cosmic-ray pressures. The coupling of the Jeans, Alfv{é}n and magnetosonic waves, and the conditions of damping or instability are studied in three different cases, namely when the propagation direction is perpendicular, parallel and oblique to the static magnetic field, and are shown to be significantly modified by the effects of the Coriolis force due to the rotation of cosmic fluids and the cosmic-ray diffusion. The coupled modes can be damped or anti-damped depending on the wave number is above or below the Jeans critical wave number that is reduced by the effects of the Coriolis force and the cosmic-ray pressure. It is found that the deviation of the axis of rotation from the direction of the static magnetic field gives rise to the coupling between the Alfv{é}n wave and the classical Jeans mode which otherwise results into the modified slow and fast Alfv{é}n waves as well as the modified classical Jeans modes. Furthermore, due to the effects of the cosmic rays diffusion, there appears a new wave mode (may be called the fast Jeans mode) in the intermediate frequency regimes of the slow and fast Alfv{é}n waves, which seems to be dispersionless in the long-wavelength propagation and has a lower growth rate of instability in the high density regimes of galaxies. The dispersion properties and the instabilities of different kinds of MHD waves reported here can play pivotal roles in the formation of various galactic structures at different length scales.