论文标题
随机扁平捆绑包和等分分配
Random flat bundles and equidistribution
论文作者
论文摘要
每个签名$ \useplineλ(n)=(λ_1(n),\ dots,λ_n(n))$,其中$λ_1(n)\ geq \ dots \geqλ_n(n)$是整数$π_ {\luesdlineλ(n)}:u(n)\ rightArrow \ text {gl}(v _ {\luneslineλ(n)})$ u(n)$。假设$ x $是一个有限区域的多重表面,$χ$是$ \ text {hom}(π_1(x),u(n))$中的随机表面表示,配备了单独的概率度量,$(\ upessline / nline / nline / nline / nline)_ {n = n = 1}^^{\ inpline / nline / luespline / n = 1}^{n = 1}^{令$ | \usewinlineλ(n)|:= \ sum_i |λ_i(n)| $。 We show that there is an absolute constant $c>0$ such that if $0\neq |\underlineλ(n)|\leq c\frac{\log n}{\log\log n}$ for sufficiently large $n$, then the Laplacians $Δ_{χ,\underlineλ(n)}$ acting on sections of the flat unitary bundles associated to the surface representations \ [π_1(x)\xrightArrowχu(n)\ xrightArrow {π_ {\usewiseplineλ(n)}} \ text {gl}(v _ {v _ {\usevenlineλ(n)})\]具有每一个$ \ varepsilon> 0 $ 0 $ \ varepsilon> 0 \ [\ mathbb {p} \ left [χ:\ inf \ text {spec}(Δ_{χ,\useplineλ(n)})\ geq \ geq \ frac {1} {4} {4} - \ \ varepsilon \ right] $ \ text {spec}(δ_{χ,\usewiseLlineλ(n)})$是$Δ_{χ,\usevenlineλ(n)} $的频谱。 A special case of this is that flat unitary bundles associated to $χ:π_1(X)\rightarrow U(n)$ asymptotically almost surely as $n\rightarrow\infty$ have least eigenvalue at least $\frac{1}{4}-\varepsilon$, irrespective of the spectral gap of $X$ itself.使用hide-magee方法证明了这一点。使用上面的频谱定理并证明概率的质量测量定理,我们还获得了概率的等距定理,该概率是针对$ n $的长度的图像$χ$的图像$χ$。
Each signature $\underlineλ(n)=(λ_1(n),\dots,λ_n(n))$, where $λ_1(n)\geq\dots\geqλ_n(n)$ are integers, gives an irreducible representation $π_{\underlineλ(n)}:U(n)\rightarrow\text{GL}(V_{\underlineλ(n)})$ of the unitary group $U(n)$. Suppose $X$ is a finite-area cusped hyperbolic surface, $χ$ is a random surface representation in $\text{Hom}(π_1(X),U(n))$ equipped with a Haar unitary probability measure, and $(\underlineλ(n))_{n=1}^{\infty}$ is a sequence of signatures. Let $|\underlineλ(n)|:=\sum_i|λ_i(n)|$. We show that there is an absolute constant $c>0$ such that if $0\neq |\underlineλ(n)|\leq c\frac{\log n}{\log\log n}$ for sufficiently large $n$, then the Laplacians $Δ_{χ,\underlineλ(n)}$ acting on sections of the flat unitary bundles associated to the surface representations \[π_1(X)\xrightarrowχ U(n)\xrightarrow{π_{\underlineλ(n)}}\text{GL}(V_{\underlineλ(n)})\] have the property that for every $\varepsilon>0$ \[\mathbb{P}\left[χ:\inf\text{Spec}(Δ_{χ,\underlineλ(n)})\geq\frac{1}{4}-\varepsilon\right]\xrightarrow{n\rightarrow\infty}1,\] where $\text{Spec}(Δ_{χ,\underlineλ(n)})$ is the spectrum of $Δ_{χ,\underlineλ(n)}$. A special case of this is that flat unitary bundles associated to $χ:π_1(X)\rightarrow U(n)$ asymptotically almost surely as $n\rightarrow\infty$ have least eigenvalue at least $\frac{1}{4}-\varepsilon$, irrespective of the spectral gap of $X$ itself. This is proved using the Hide--Magee method. Using the spectral theorem above and proving a probabilistic prime geodesic theorem, we also obtain a probabilistic equidistribution theorem for the images under $χ$ of geodesics of lengths dependent on the rank $n$.