论文标题

大脑启发的合作共享控制框架用于脑机界面

The Brain-Inspired Cooperative Shared Control Framework for Brain-Machine Interface

论文作者

Yang, Junjie, Liu, Ling, Zheng, Shengjie, Qian, Lang, Gao, Gang, Chen, Xin, Li, Xiaojian

论文摘要

在脑机界面(BMI)应用中,一个关键的挑战是神经信号中的信息含量低,噪声水平很高,严重影响了稳定的机器人控制。为了应对这一挑战,我们提出了一个基于脑启发的智能的合作共享控制框架,其中控制信号是从神经活动中解码的,并且机器人可以处理精细的控制。这允许机器人和大脑之间的柔性和适应性相互作用控制结合,从而使复杂的人类机器人协作可行。提出的框架利用尖峰神经网络(SNN)来控制机器人的手臂和车轮,包括速度和转向。尽管系统的完整集成仍然是未来的目标,但已成功实施了用于机器人手臂控制,对象跟踪和地图生成的单个模块。该框架有望显着提高BMI的性能。在实际环境中,具有合作共享控制的BMI利用脑启发的算法将大大提高临床应用的潜力。

In brain-machine interface (BMI) applications, a key challenge is the low information content and high noise level in neural signals, severely affecting stable robotic control. To address this challenge, we proposes a cooperative shared control framework based on brain-inspired intelligence, where control signals are decoded from neural activity, and the robot handles the fine control. This allows for a combination of flexible and adaptive interaction control between the robot and the brain, making intricate human-robot collaboration feasible. The proposed framework utilizes spiking neural networks (SNNs) for controlling robotic arm and wheel, including speed and steering. While full integration of the system remains a future goal, individual modules for robotic arm control, object tracking, and map generation have been successfully implemented. The framework is expected to significantly enhance the performance of BMI. In practical settings, the BMI with cooperative shared control, utilizing a brain-inspired algorithm, will greatly enhance the potential for clinical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源