论文标题
无限统计和总皮特夫斯基方程
Infinite Statistics and the Gross Pitaevskii Equation
论文作者
论文摘要
我们澄清说,理想的气体服从无限的统计数据无法经历冷凝。然后,我们得出在外部电势和粒子间相互作用下遵守无限统计的相同粒子系统的动态方程。该派生利用了根据数量运营商和过渡号运算符而写的哈密顿量。在非常低的温度下,可以丢弃激发职业水平的动力学,无限统计系统的动态可以通过Pitaevskii方程来描述,类似于Bose-Einstein案例。
We clarify that an ideal gas obeying infinite statistics cannot undergo condensation. Then we derive the dynamic equation for an identical particle system obeying infinite statistics under external potential and inter-particle interaction. The derivation utilizes the Hamiltonian written in terms of the number operators and the transition number operators. At a very low temperature, where one can discard the dynamics of the excited occupation level, the dynamic of an infinite statistics system can be described by the Gross Pitaevskii equation, similar to the Bose-Einstein case.