论文标题
您看不到我:基于激光雷达的自动驾驶汽车驾驶框架的身体去除攻击
You Can't See Me: Physical Removal Attacks on LiDAR-based Autonomous Vehicles Driving Frameworks
论文作者
论文摘要
自动驾驶汽车(AVS)越来越多地使用基于激光雷达的对象检测系统来感知道路上的其他车辆和行人。尽管对基于激光雷达的自主驾驶体系结构的现有攻击着重于降低AV对象检测模型的置信度评分以诱导障碍物误导,但我们的研究发现了如何利用基于激光的Spoofing技术来选择性地删除在用于输入AV感知之前在传感器级别上删除LiDAR Point Cloine云数据的数据。这种关键发光物信息的消融导致自动驾驶障碍物探测器无法识别和找到障碍,因此,使AV诱导AV做出危险的自动驾驶决策。在本文中,我们为人眼看不见的方法,通过利用与自动驾驶框架集成的LIDAR传感器数据的固有自动转换和过滤过程来隐藏对象并欺骗自动驾驶汽车的障碍物探测器。我们称之为这种攻击的身体去除攻击(PRA),我们证明了它们对三个流行的AV障碍探测器(Apollo,AutoWare,Pointpillars)的有效性,我们达到了45°攻击能力。我们评估了对三种融合模型(Frustum-Convnet,AVOD和集成语义级融合)的攻击影响以及使用行业级模拟器LGSVL驾驶决策的后果。在我们移动的车辆方案中,我们取得了92.7%的成功率,消除了目标障碍物的90%。最后,我们证明了这次攻击的成功,以防止欺骗和对象隐藏攻击,并讨论两种增强的防御策略,以减轻我们的攻击。
Autonomous Vehicles (AVs) increasingly use LiDAR-based object detection systems to perceive other vehicles and pedestrians on the road. While existing attacks on LiDAR-based autonomous driving architectures focus on lowering the confidence score of AV object detection models to induce obstacle misdetection, our research discovers how to leverage laser-based spoofing techniques to selectively remove the LiDAR point cloud data of genuine obstacles at the sensor level before being used as input to the AV perception. The ablation of this critical LiDAR information causes autonomous driving obstacle detectors to fail to identify and locate obstacles and, consequently, induces AVs to make dangerous automatic driving decisions. In this paper, we present a method invisible to the human eye that hides objects and deceives autonomous vehicles' obstacle detectors by exploiting inherent automatic transformation and filtering processes of LiDAR sensor data integrated with autonomous driving frameworks. We call such attacks Physical Removal Attacks (PRA), and we demonstrate their effectiveness against three popular AV obstacle detectors (Apollo, Autoware, PointPillars), and we achieve 45° attack capability. We evaluate the attack impact on three fusion models (Frustum-ConvNet, AVOD, and Integrated-Semantic Level Fusion) and the consequences on the driving decision using LGSVL, an industry-grade simulator. In our moving vehicle scenarios, we achieve a 92.7% success rate removing 90\% of a target obstacle's cloud points. Finally, we demonstrate the attack's success against two popular defenses against spoofing and object hiding attacks and discuss two enhanced defense strategies to mitigate our attack.