论文标题
稳定叶子集的杂物连接和应用的残留公式
A residue formula for meromorphic connections and applications to stable sets of foliations
论文作者
论文摘要
我们讨论了残留公式,该公式将线条束的第一类定位到给定的全态连接的奇异基因座。作为一种应用,我们解释了布鲁内拉关于特殊最小的构象一组的猜想的证据,其中有足够的正常捆绑包,以及Levi Flat flat Shypersurfaces的不存在的理论,并具有横向偏爱的Levi Levi Poliation在紧凑的Kähler表面中。
We discuss residue formulae that localize the first Chern class of a line bundle to the singular locus of a given holomorphic connection. As an application, we explain a proof for Brunella's conjecture about exceptional minimal sets of codimension one holomorphic foliations with ample normal bundle and for a nonexistence theorem of Levi flat hypersurfaces with transversely affine Levi foliation in compact Kähler surfaces.