论文标题
极限组的强烈收敛统一表示
Strongly convergent unitary representations of limit groups
论文作者
论文摘要
我们证明,所有有限生成的完全残留的组(极限组)都有一系列有限的尺寸单位表示,这些表示“强烈收敛”到该组的常规表示。 Haagerup和Thorbjørnsen在2005年证明了有限生成的自由群体的相应陈述。实际上,我们可以将统一的表示来自置换矩阵的代表来产生,这是Bordenave和Collins证明的。 至于haagerup和thorbjørnsen,这种表示的存在意味着对于任何非亚伯利亚极限组,降低的$ c^{*} $的延伸不变 - 代数 - 代数不是一个组(具有不可逆转元素) 我们主要定理的一个重要特殊情况是将至少两个属的封闭式封闭式表面的基本组应用于基本组。在这种情况下,我们的结果可以用作附录作者先前开发的方法的输入。输出是我们先前证明Buser 1984年的证据的一种变体,表明存在一系列封闭的双曲线表面,属于无穷大的属,而Laplacian的第一个特征值则倾向于$ \ frac {1} {1} {4} $。在证明的这种变化中,表面的收缩远离零,并且可以认为表面是算术的。
We prove that all finitely generated fully residually free groups (limit groups) have a sequence of finite dimensional unitary representations that `strongly converge' to the regular representation of the group. The corresponding statement for finitely generated free groups was proved by Haagerup and Thorbjørnsen in 2005. In fact, we can take the unitary representations to arise from representations of the group by permutation matrices, as was proved for free groups by Bordenave and Collins. As for Haagerup and Thorbjørnsen, the existence of such representations implies that for any non-abelian limit group, the Ext-invariant of the reduced $C^{*}$-algebra is not a group (has non-invertible elements) An important special case of our main theorem is in application to the fundamental groups of closed orientable surfaces of genus at least two. In this case, our results can be used as an input to the methods previously developed by the authors of the appendix. The output is a variation of our previous proof of Buser's 1984 conjecture that there exist a sequence of closed hyperbolic surfaces with genera tending to infinity and first eigenvalue of the Laplacian tending to $\frac{1}{4}$. In this variation of the proof, the systoles of the surfaces are bounded away from zero and the surfaces can be taken to be arithmetic.