论文标题
预测语义机器人导航的密集和上下文感知的成本图
Predicting Dense and Context-aware Cost Maps for Semantic Robot Navigation
论文作者
论文摘要
我们在未知环境中调查了对象目标导航的任务,该环境通过语义标签指定目标(例如找到沙发)。这样的导航任务尤其具有挑战性,因为它需要在不同设置中了解语义上下文。以前的大多数工作都以离散行动政策的假设解决了这一问题,而我们提出了一种具有连续控制的方法,它使其更接近现实世界的应用。我们提出了一个深层的神经网络架构和损失功能,以预测隐式包含语义上下文的密集成本图,并指导机器人达到语义目标。我们还提出了一种在架构中融合中级视觉表示的新颖方式,以提供成本图预测的其他语义提示。然后,基于抽样的模型预测控制器(MPC)使用估计的成本图来生成连续的机器人动作。初步实验表明,我们网络生成的成本图适用于MPC,并且可以比基线方法更有效地指导代理到语义目标。结果还表明,中层表示对导航的重要性,通过将成功率提高7个百分点来提高导航。
We investigate the task of object goal navigation in unknown environments where the target is specified by a semantic label (e.g. find a couch). Such a navigation task is especially challenging as it requires understanding of semantic context in diverse settings. Most of the prior work tackles this problem under the assumption of a discrete action policy whereas we present an approach with continuous control which brings it closer to real world applications. We propose a deep neural network architecture and loss function to predict dense cost maps that implicitly contain semantic context and guide the robot towards the semantic goal. We also present a novel way of fusing mid-level visual representations in our architecture to provide additional semantic cues for cost map prediction. The estimated cost maps are then used by a sampling-based model predictive controller (MPC) for generating continuous robot actions. The preliminary experiments suggest that the cost maps generated by our network are suitable for the MPC and can guide the agent to the semantic goal more efficiently than a baseline approach. The results also indicate the importance of mid-level representations for navigation by improving the success rate by 7 percentage points.