论文标题
爆炸和表面的量子光谱
Blow-ups and the quantum spectrum of surfaces
论文作者
论文摘要
我们研究了在爆炸下光滑的射击表面的量子(或dubrovin)连接的频谱的行为。我们的主要结果是,对于参数的较小值,这种表面的量子光谱渐近地是表面最小模型的量子谱的结合,并且位于“靠近无穷大”的额外数量有限的附加点,该点与特殊的分裂相对应。这证明了在表面案例中肯特齐奇的猜想。
We investigate the behaviour of the spectrum of the quantum (or Dubrovin) connection of smooth projective surfaces under blow-ups. Our main result is that for small values of the parameters, the quantum spectrum of such a surface is asymptotically the union of the quantum spectrum of a minimal model of the surface and a finite number of additional points located "close to infinity", that correspond bijectively to the exceptional divisors. This proves a conjecture of Kontsevich in the surface case.