论文标题

通过面向容器的过滤网络进行脑血管分割

Cerebrovascular Segmentation via Vessel Oriented Filtering Network

论文作者

Guo, Zhanqiang, Luan, Yao, Feng, Jianjiang, Lu, Wangsheng, Yin, Yin, Yang, Guangming, Zhou, Jie

论文摘要

磁共振血管造影(MRA)和计算机断层扫描(CTA)的准确脑血管分割在诊断和治疗脑血管病理学方面具有重要意义。由于血管的复杂性和拓扑变异性,血管网络的完整和准确分割仍然是一个挑战。在本文中,我们提出了一个面向容器的过滤网络(VOF-NET),该网络将域知识嵌入卷积神经网络中。我们根据血管方向领域设计定向过滤器,该过滤器是通过方向估计网络获得的。通过定向过滤提取的特征被注入分割网络,以利用先前的血管细长和弯曲的管状结构的信息。 CTA和MRA数据集的实验结果表明,所提出的方法对血管分割有效,并且嵌入特定的血管滤波器可改善分割性能。

Accurate cerebrovascular segmentation from Magnetic Resonance Angiography (MRA) and Computed Tomography Angiography (CTA) is of great significance in diagnosis and treatment of cerebrovascular pathology. Due to the complexity and topology variability of blood vessels, complete and accurate segmentation of vascular network is still a challenge. In this paper, we proposed a Vessel Oriented Filtering Network (VOF-Net) which embeds domain knowledge into the convolutional neural network. We design oriented filters for blood vessels according to vessel orientation field, which is obtained by orientation estimation network. Features extracted by oriented filtering are injected into segmentation network, so as to make use of the prior information that the blood vessels are slender and curved tubular structure. Experimental results on datasets of CTA and MRA show that the proposed method is effective for vessel segmentation, and embedding the specific vascular filter improves the segmentation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源