论文标题

图像的福利估计。对域专家的测试能够从卫星图像的目视检查中评估贫困的能力

Welfare estimations from imagery. A test of domain experts ability to rate poverty from visual inspection of satellite imagery

论文作者

Ibrahim, Wahab, Hall, Ola

论文摘要

本研究使用领域专家来估计高分辨率卫星图像的福利水平和指标。我们将2015年坦桑尼亚DHS数据集的财富五分之一用作地面真相数据。我们使用相关性,序数回归和多项式逻辑回归分析了集群级别的相对财富的视觉估算的性能,并将其与2015年DHS调查中的财富排名进行了比较。在608个集群中,有115个获得了人类专家和独立DHS排名的相同评级。对于59%的集群,专家评分略低。一方面,财富的重大积极预测是现代屋顶和更广阔的道路的存在。例如,与没有板岩或瓷砖屋顶的建筑物相比,在财富排名较高的五分位数上获得评级的日志赔率平均要高0.917点。另一方面,重要的负面预测因素包括道路覆盖不良,低至中等的绿化覆盖范围以及中等建筑物的密度。多项式回归模型的其他主要预测因素包括定居结构和农场规模。这些发现很重要,因为这些财富和贫困的相关性在卫星图像上是可读的,并且可用于在贫困预测中训练机器学习模型。将这些功能用于训练将有助于更透明的ML模型,从而有助于解释AI。

The present study uses domain experts to estimate welfare levels and indicators from high-resolution satellite imagery. We use the wealth quintiles from the 2015 Tanzania DHS dataset as ground truth data. We analyse the performance of the visual estimation of relative wealth at the cluster level and compare these with wealth rankings from the DHS survey of 2015 for that country using correlations, ordinal regressions and multinomial logistic regressions. Of the 608 clusters, 115 received the same ratings from human experts and the independent DHS rankings. For 59 percent of the clusters, experts ratings were slightly lower. On the one hand, significant positive predictors of wealth are the presence of modern roofs and wider roads. For instance, the log odds of receiving a rating in a higher quintile on the wealth rankings is 0.917 points higher on average for clusters with buildings with slate or tile roofing compared to those without. On the other hand, significant negative predictors included poor road coverage, low to medium greenery coverage, and low to medium building density. Other key predictors from the multinomial regression model include settlement structure and farm sizes. These findings are significant to the extent that these correlates of wealth and poverty are visually readable from satellite imagery and can be used to train machine learning models in poverty predictions. Using these features for training will contribute to more transparent ML models and, consequently, explainable AI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源