论文标题

混合卤化物钙钛矿的电子疾病景观

The electronic disorder landscape of mixed halide perovskites

论文作者

Liu, Yun, Banon, Jean-Philippe, Frohna, Kyle, Chiang, Yu-Hsien, Tumen-Ulzii, Ganbaatar, Stranks, Samuel D., Filoche, Marcel, Friend, Richard H.

论文摘要

铅混合甲基钙钛矿的带隙可调节性使它们成为光电子中各种应用的有前途的候选人,因为它们表现出急剧的光吸收量,尽管存在卤化物合金的疾病。在这里,我们使用本地化景观理论来揭示由于碘化物的成分合金引起的静态障碍:溴化溴化物钙钛矿最多可为Urbach能量贡献。我们的建模表明,这种小贡献的原因是由于钙钛矿中的有效质量较小,导致对电子和孔的“有效限制电位”的自然长度尺寸约为20nm,并且具有短距离电位的波动平滑。整个组成范围内的Urbach能量的增加与我们的光吸收测量非常吻合。我们在三个维度上建模最大80 nm的系统系统,使我们能够探索卤化物的分离,准确地重现了实验观察到的吸收光谱,并证明了我们在大长度尺度上对电子结构进行建模的方法的范围。我们的结果表明,我们应该超越静态贡献,并专注于动态温度对urbach能量的贡献。

Bandgap tunability of lead mixed-halide perovskites makes them promising candidates for various applications in optoelectronics since they exhibit sharp optical absorption onsets despite the presence of disorder from halide alloying. Here we use localization landscape theory to reveal that the static disorder due to compositional alloying for iodide:bromide perovskite contributes at most 3 meV to the Urbach energy. Our modelling reveals that the reason for this small contribution is due to the small effective masses in perovskites, resulting in a natural length scale of around 20nm for the "effective confining potential" for electrons and holes, with short range potential fluctuations smoothed out. The increase in Urbach energy across the compositional range agrees well with our optical absorption measurements. We model systems of sizes up to 80 nm in three dimensions, allowing us to explore halide segregation, accurately reproducing the experimentally observed absorption spectra and demonstrating the scope of our method to model electronic structures on large length scales. Our results suggest that we should look beyond static contribution and focus on the dynamic temperature dependent contribution to the Urbach energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源