论文标题
comfort关于$ \ mathbb q ^{(2 ^\ mathfrak c)} $的问题和一个华莱士半群的问题,其立方体非常紧凑
Comfort's question on powers in $\mathbb Q ^{(2^\mathfrak c)}$ and a Wallace semigroup whose cube is countably compact
论文作者
论文摘要
我们证明,$ \ mathfrak {c} $无与伦比的选择性超滤器的存在意味着存在一个wallace semigroup,其立方体的cube非常紧凑。此外,假设存在$ 2^{\ Mathfrak c} $无可比算的选择性超滤器和$ 2^{<2^{<2^{\ Mathfrak {c}}} = 2^{\ Mathfrak {c}} $,我们会根据comport to complort offient offients of comports countiite countiite coundient coundient coundient offinite untient inftins offinite inftine countient coundient of Uptinect of Uptinects of UptiNect of UptiNS(我们)。
We prove that the existence of $\mathfrak{c}$ incomparable selective ultrafilters implies the existence of a Wallace semigroup whose cube is countably compact. In addition, assuming the existence of $2^{\mathfrak c}$ incomparable selective ultrafilters and $2^{< 2^{\mathfrak{c}}} = 2^{\mathfrak{c}}$, we obtain torsion-free topological groups with respect to Comfort's question on the countable compactness of (infinite) powers of a topological group.