论文标题

两流体相对论等离子体流程方程的高级有限差分熵稳定方案

High-order finite-difference entropy stable schemes for two-fluid relativistic plasma flow equations

论文作者

Bhoriya, Deepak, Kumar, Harish, Chandrashekar, Praveen

论文摘要

在本文中,我们为两流体相对论等离子体流动方程式提出了高阶有限差熵稳定方案。这是通过利用方程的结构来实现的,该方程由三个独立的通量组件组成。前两个组件描述了离子和电子流,它们是使用相对论水动力学方程进行建模的。第三个组件是麦克斯韦方程,即线性系统。离子和电子流的耦合,电磁场仅通过源项。此外,我们还表明源术语不影响熵的演变。 为了设计半混凝土熵稳定方案,我们在Bhoriya等人的RHD熵稳定方案中扩展了。到三个维度。然后将其与麦克斯韦方程的熵稳定离散化结合在一起。最后,我们使用SSP-RK方案随时间离散。我们还提出了ARK-EMEX方案来处理硬源术语。代数方程的结果非线性集合是局部的(在每个离散点)。这些方程是使用牛顿的方法求解的,这导致了有效的方法。然后使用各种测试问题对提出的方案进行测试,以证明其稳定性,准确性和效率。

In this article, we propose high-order finite-difference entropy stable schemes for the two-fluid relativistic plasma flow equations. This is achieved by exploiting the structure of the equations, which consists of three independent flux components. The first two components describe the ion and electron flows, which are modeled using the relativistic hydrodynamics equation. The third component is Maxwell's equations, which are linear systems. The coupling of the ion and electron flows, and electromagnetic fields is via source terms only. Furthermore, we also show that the source terms do not affect the entropy evolution. To design semi-discrete entropy stable schemes, we extend the RHD entropy stable schemes in Bhoriya et al. to three dimensions. This is then coupled with entropy stable discretization of the Maxwell's equations. Finally, we use SSP-RK schemes to discretize in time. We also propose ARK-IMEX schemes to treat the stiff source terms; the resulting nonlinear set of algebraic equations is local (at each discretization point). These equations are solved using the Newton's Method, which results in an efficient method. The proposed schemes are then tested using various test problems to demonstrate their stability, accuracy and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源