论文标题
室内智能手机大满贯,带有学识渊博的位置功能
Indoor Smartphone SLAM with Learned Echoic Location Features
论文作者
论文摘要
室内自定位是智能手机的高度需求系统功能。当其限制因素生效时,基于惯性,射频和地磁传感的当前解决方案可能会降低性能。在本文中,我们提出了一个新的室内同时本地化和映射(SLAM)系统,该系统利用智能手机的内置音频硬件和惯性测量单元(IMU)。我们的系统使用智能手机的扬声器发出近乎听不听的呼叫,然后麦克风从室内环境中记录声学回声。我们的分析测量结果表明,回声带有次级粒度的位置信息。为了实现大满贯,我们应用对比度学习来构建回声位置功能(ELF)提取器,以便可以从相关的ELF跟踪中准确检测到智能手机轨迹上的环路封闭。检测结果有效地调节了基于IMU的轨迹重建。广泛的实验表明,我们的基于ELF的SLAM达到了中位数的本地化错误,\ \ \ text {m} $,$ 0.53 \,\ \ text {m} $和$ 0.4 \,\,\,\ \,\ text {m} $在客厅的重建轨迹上,一个客厅,办公室,办公室和购物赛车的geigs and geigs and perms and perms and wii-fi the the Office the Officationed trajectioned。
Indoor self-localization is a highly demanded system function for smartphones. The current solutions based on inertial, radio frequency, and geomagnetic sensing may have degraded performance when their limiting factors take effect. In this paper, we present a new indoor simultaneous localization and mapping (SLAM) system that utilizes the smartphone's built-in audio hardware and inertial measurement unit (IMU). Our system uses a smartphone's loudspeaker to emit near-inaudible chirps and then the microphone to record the acoustic echoes from the indoor environment. Our profiling measurements show that the echoes carry location information with sub-meter granularity. To enable SLAM, we apply contrastive learning to construct an echoic location feature (ELF) extractor, such that the loop closures on the smartphone's trajectory can be accurately detected from the associated ELF trace. The detection results effectively regulate the IMU-based trajectory reconstruction. Extensive experiments show that our ELF-based SLAM achieves median localization errors of $0.1\,\text{m}$, $0.53\,\text{m}$, and $0.4\,\text{m}$ on the reconstructed trajectories in a living room, an office, and a shopping mall, and outperforms the Wi-Fi and geomagnetic SLAM systems.