论文标题
重新访问文本游戏中“文本”的角色
Revisiting the Roles of "Text" in Text Games
论文作者
论文摘要
文本游戏为应对强化学习(RL)挑战的自然语言理解(NLU)方法提供了机会。但是,最近的工作质疑了NLU的必要性,显示随机文本哈希可以表现出色。在本文中,我们对面对不同的RL挑战的文本作用进行了精细的调查,并调和语义和非语义语言表示可能是互补而不是对比的。具体而言,我们提出了一个简单的方案,将相关的上下文信息提取到近似状态哈希作为基于RNN的文本代理的额外输入中。这种轻巧的插件使用先进的NLU技术(例如知识图和通道检索)实现了最先进的文本代理的竞争性能,这表明非NLU方法可能足以应对部分可观察性的挑战。但是,如果我们删除RNN编码器并单独使用近似或什至地面状态哈希,则该模型会惨败,这证实了语义函数近似值的重要性,以应对组合较大的观测和动作空间的挑战。我们的发现和分析为设计更好的文本游戏任务设置和代理提供了新的见解。
Text games present opportunities for natural language understanding (NLU) methods to tackle reinforcement learning (RL) challenges. However, recent work has questioned the necessity of NLU by showing random text hashes could perform decently. In this paper, we pursue a fine-grained investigation into the roles of text in the face of different RL challenges, and reconcile that semantic and non-semantic language representations could be complementary rather than contrasting. Concretely, we propose a simple scheme to extract relevant contextual information into an approximate state hash as extra input for an RNN-based text agent. Such a lightweight plug-in achieves competitive performance with state-of-the-art text agents using advanced NLU techniques such as knowledge graph and passage retrieval, suggesting non-NLU methods might suffice to tackle the challenge of partial observability. However, if we remove RNN encoders and use approximate or even ground-truth state hash alone, the model performs miserably, which confirms the importance of semantic function approximation to tackle the challenge of combinatorially large observation and action spaces. Our findings and analysis provide new insights for designing better text game task setups and agents.