论文标题

微分方程的符号恢复:可识别性问题

Symbolic Recovery of Differential Equations: The Identifiability Problem

论文作者

Scholl, Philipp, Bacho, Aras, Boche, Holger, Kutyniok, Gitta

论文摘要

微分方程的符号恢复是雄心勃勃的尝试,尝试使用机器学习技术自动化控制方程的推导。与假设方程结构已知并关注特定参数的估计的经典方法相反,这些算法旨在同时学习结构和参数。虽然唯一性以及管理方程参数的可识别性是参数估计领域中的一个良好问题,但尚未对其进行符号恢复进行研究。但是,由于该算法旨在涵盖较大的管理方程空间,因此该问题应该更存在。在本文中,我们研究了在哪些条件下,微分方程的解决方案并不能独特地确定方程本身。对于各种类别的微分方程,我们提供了必要和足够的条件,以唯一确定相应的微分方程。然后,我们使用结果来设计旨在确定函数是否唯一求解差分方程的数值算法。最后,我们提供了广泛的数值实验,表明我们的算法确实可以保证学到的管理微分方程的唯一性,而无需假设有关功能的分析形式的知识,从而确保了学习方程的可靠性。

Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations with the use of machine learning techniques. In contrast to classical methods which assume the structure of the equation to be known and focus on the estimation of specific parameters, these algorithms aim to learn the structure and the parameters simultaneously. While the uniqueness and, therefore, the identifiability of parameters of governing equations are a well-addressed problem in the field of parameter estimation, it has not been investigated for symbolic recovery. However, this problem should be even more present in this field since the algorithms aim to cover larger spaces of governing equations. In this paper, we investigate under which conditions a solution of a differential equation does not uniquely determine the equation itself. For various classes of differential equations, we provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation. We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely. Finally, we provide extensive numerical experiments showing that our algorithms can indeed guarantee the uniqueness of the learned governing differential equation, without assuming any knowledge about the analytic form of function, thereby ensuring the reliability of the learned equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源