论文标题
安全联合数据驱动的进化多目标优化算法
A Secure Federated Data-Driven Evolutionary Multi-objective Optimization Algorithm
论文作者
论文摘要
数据驱动的进化算法通常旨在利用有限的数据背后的信息进行优化,事实证明,这些信息已成功地解决了许多复杂的现实世界优化问题。但是,大多数数据驱动的进化算法都是集中的,引起了隐私和安全问题。现有的联合贝叶斯算法和数据驱动的进化算法主要保护每个客户端的原始数据。为了解决这个问题,本文提出了一种安全的联合数据驱动的进化多目标优化算法,以保护原始数据和通过优化服务器上执行的采集功能获得的原始数据和新填充的解决方案。我们通过计算该客户端上未观察到的点的采集功能值,从而降低了泄漏有关要采样的解决方案的信息,从而在每个替代更新中选择随机选择的客户端上的查询点。此外,由于每个客户端的预测目标值可能包含敏感信息,因此我们用基于Diffie-Hellmann的噪声掩盖了目标值,然后仅将其他客户端的屏蔽客观值发送到所选客户端。由于采集函数的计算也需要预测的目标值和预测的不确定性,因此预测的平均客观和不确定性被标准化以减少噪声的影响。一组广泛使用的多目标优化基准的实验结果表明,所提出的算法可以保护隐私和增强安全性,而仅在联合数据驱动的进化优化的性能中仅可忽略的牺牲。
Data-driven evolutionary algorithms usually aim to exploit the information behind a limited amount of data to perform optimization, which have proved to be successful in solving many complex real-world optimization problems. However, most data-driven evolutionary algorithms are centralized, causing privacy and security concerns. Existing federated Bayesian algorithms and data-driven evolutionary algorithms mainly protect the raw data on each client. To address this issue, this paper proposes a secure federated data-driven evolutionary multi-objective optimization algorithm to protect both the raw data and the newly infilled solutions obtained by optimizing the acquisition function conducted on the server. We select the query points on a randomly selected client at each round of surrogate update by calculating the acquisition function values of the unobserved points on this client, thereby reducing the risk of leaking the information about the solution to be sampled. In addition, since the predicted objective values of each client may contain sensitive information, we mask the objective values with Diffie-Hellmann-based noise, and then send only the masked objective values of other clients to the selected client via the server. Since the calculation of the acquisition function also requires both the predicted objective value and the uncertainty of the prediction, the predicted mean objective and uncertainty are normalized to reduce the influence of noise. Experimental results on a set of widely used multi-objective optimization benchmarks show that the proposed algorithm can protect privacy and enhance security with only negligible sacrifice in the performance of federated data-driven evolutionary optimization.