论文标题
张量网络有效地表示量子多体态的施密特分解
Tensor Network Efficiently Representing Schmidt Decomposition of Quantum Many-Body States
论文作者
论文摘要
访问量子多体状态的纠缠的有效方法,该量子的复杂性通常与系统尺寸$ n $呈指数缩放,这是一个令人担忧的问题。在这里,我们提出了有效代表具有非平凡两部分边界的有限且无限大小的量子状态的Schmidt分解的Schmidt Tensor网络状态(Schmidt TNS)。关键思想是代表具有线性缩放的复杂性与$ n $的张量网络(TNS)中的Schmidt系数(即纠缠频谱)和转换。具体而言,转换写为由局部单一张量形成的TNS编写,而Schmidt系数则以正定矩阵乘积状态(MPS)进行编码。对于无限大小的病例,可以将翻译不变性施加在TNS和MP上。施密特TNS的有效性通过模拟具有几何挫败感的准二维自旋模型的基态来证明。我们的结果表明,即使分解状态的纠缠熵很强,编码Schmidt系数的MP也纠缠在一起。这证明了使用MPS编码Schmidt系数的效率,并承诺在全州采样任务上指数加速。
Efficient methods to access the entanglement of a quantum many-body state, where the complexity generally scales exponentially with the system size $N$, have long a concern. Here we propose the Schmidt tensor network state (Schmidt TNS) that efficiently represents the Schmidt decomposition of finite- and even infinite-size quantum states with nontrivial bipartition boundary. The key idea is to represent the Schmidt coefficients (i.e., entanglement spectrum) and transformations in the decomposition to tensor networks (TNs) with linearly-scaled complexity versus $N$. Specifically, the transformations are written as the TNs formed by local unitary tensors, and the Schmidt coefficients are encoded in a positive-definite matrix product state (MPS). Translational invariance can be imposed on the TNs and MPS for the infinite-size cases. The validity of Schmidt TNS is demonstrated by simulating the ground state of the quasi-one-dimensional spin model with geometrical frustration. Our results show that the MPS encoding the Schmidt coefficients is weakly entangled even when the entanglement entropy of the decomposed state is strong. This justifies the efficiency of using MPS to encode the Schmidt coefficients, and promises an exponential speedup on the full-state sampling tasks.