论文标题
通过滑动块代码编码子班
Encoding subshifts through sliding block codes
论文作者
论文摘要
我们本着零错误信息理论的精神证明了克里格的嵌入定理的概括。具体而言,考虑到有限型$ x $的混合转移,一种混合的sofic shift $ y $以及滤光的滑动块代码$π$π:x \ to y $,我们为拓扑熵的子迁移$ z $严格低于$ y $的子迁移$ z $提供了必要的条件,以便将$ y $的$ y $ cy $ c $ c \ c \ x $ compive comptive and x $ cobsive x $ compive comptive x $ compive ucdive $ cobsive。
We prove a generalization of Krieger's embedding theorem, in the spirit of zero-error information theory. Specifically, given a mixing shift of finite type $X$, a mixing sofic shift $Y$, and a surjective sliding block code $π: X \to Y$, we give necessary and sufficient conditions for a subshift $Z$ of topological entropy strictly lower than that of $Y$ to admit an embedding $ψ: Z \to X$ such that $π\circ ψ$ is injective.