论文标题

迈向完全自主的无人机控制器,用于移动平台检测和着陆

Towards a Fully Autonomous UAV Controller for Moving Platform Detection and Landing

论文作者

Piponidis, Michalis, Aristodemou, Panayiotis, Theocharides, Theocharis

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

While Unmanned Aerial Vehicles (UAVs) are increasingly deployed in several missions, their inability of reliable and consistent autonomous landing poses a major setback for deploying such systems truly autonomously. In this paper we present an autonomous UAV landing system for landing on a moving platform. In contrast to existing attempts, the proposed system relies only on the camera sensor, and has been designed as lightweight as possible. The proposed system can be deployed on a low power platform as part of the drone payload, whilst being indifferent to any external communication or any other sensors. The system relies on a Neural Network (NN) based controller, for which a target and environment agnostic simulator was created, used in training and testing of the proposed system, via Reinforcement Learning (RL) and Proximal Policy optimization (PPO) to optimally control and steer the drone towards landing on the target. Through real-world testing, the system was evaluated with an average deviation of 15cm from the center of the target, for 40 landing attempts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源