论文标题

从示范中学习技能:运动原语到体验抽象的趋势

Learning Skills from Demonstrations: A Trend from Motion Primitives to Experience Abstraction

论文作者

Tavassoli, Mehrdad, Katyara, Sunny, Pozzi, Maria, Deshpande, Nikhil, Caldwell, Darwin G., Prattichizzo, Domenico

论文摘要

机器人的用途正在从工厂中的静态环境变化,以涵盖新颖的概念,例如在非结构化设置中的人类机器人协作。预先编程机器人的所有功能变得不切实际,因此,机器人需要学习如何自动反应,就像人类一样。但是,与机器不同,人类自然熟练地根据经验或观察来应对意外情况。因此,将这种类人的行为嵌入机器人中需要开发在机器人学习范式下模仿运动技能的神经认知模型。这些技能的有效编码与适当的工具和技术的选择至关重要。本文研究了不同的运动和行为学习方法,从运动原语(MP)到经历抽象(EA),应用于不同的机器人任务。对这些方法进行仔细检查,然后通过重构标准的挑选任务来实验基准测试。除了为选择策略和算法提供标准指南外,本文旨在了解其可能的扩展和改进的观点

The uses of robots are changing from static environments in factories to encompass novel concepts such as Human-Robot Collaboration in unstructured settings. Pre-programming all the functionalities for robots becomes impractical, and hence, robots need to learn how to react to new events autonomously, just like humans. However, humans, unlike machines, are naturally skilled in responding to unexpected circumstances based on either experiences or observations. Hence, embedding such anthropoid behaviours into robots entails the development of neuro-cognitive models that emulate motor skills under a robot learning paradigm. Effective encoding of these skills is bound to the proper choice of tools and techniques. This paper studies different motion and behaviour learning methods ranging from Movement Primitives (MP) to Experience Abstraction (EA), applied to different robotic tasks. These methods are scrutinized and then experimentally benchmarked by reconstructing a standard pick-n-place task. Apart from providing a standard guideline for the selection of strategies and algorithms, this paper aims to draw a perspectives on their possible extensions and improvements

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源