论文标题

通过高几幅功能方法

Analytical expression for the exact curved surface area of a frustum of hemiellipsoid, through hypergeometric function approach

论文作者

Pathan, M. A., Qureshi, M. I., Majid, Javid

论文摘要

我们目前的研究基本上是由一个,两个和更多变量的广义超细节功能的几个有趣的应用激励。高几何功能可能有用,并且具有与数学,物理,工程和统计科学问题的广泛应用。在本文中,我们旨在根据Appell的第二种功能和Srivastava的一般三重高层系列的功能来获得半ellipsoid的精确曲面表面积的分析表达(以前未找到并记录在文献中)。该派生基于通用超几何函数的Mellin-Barnes类型轮廓积分表示$ 〜_PF_Q(Z)$,Meijer的$ G $ - 功能和串联操作技术。还通过使用{\ it Mathematica程序}来验证半ellipsoid粉的精确弯曲表面积的封闭形式。

Our present investigation is motivated essentially by several interesting applications of generalized hypergeometric functions of one, two and more variables. The hypergeometric functions are potentially useful and have widespread applications related to the problems in the mathematical, physical, engineering and statistical sciences. In this article, we aim at obtaining the analytical expression (not previously found and recorded in the literature) for the exact curved surface area of a frustum of hemiellipsoid in terms of Appell's function of second kind and general triple hypergeometric series of Srivastava. The derivation is based on Mellin-Barnes type contour integral representations of generalized hypergeometric function$~_pF_q(z)$, Meijer's $G$-function and series manipulation technique. The closed form for the exact curved surface area of a frustum of hemiellipsoid is also verified numerically by using {\it Mathematica Program}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源