论文标题
量子Hopfield神经网络的最佳存储能力
Optimal storage capacity of quantum Hopfield neural networks
论文作者
论文摘要
量子神经网络构成了量子机学习的新兴领域的一个支柱。在这里,已经提出了经典网络实现关联记忆的量子概括 - 已经提出了能够从损坏的初始状态中检索模式或记忆的量子。通过大量模式分析量子关联记忆,并确定量子网络可以可靠存储的模式数量,即它们的存储容量,这是一个具有挑战性的开放问题。在这项工作中,我们提出并探索了一种评估量子神经网络模型最大存储能力的通用方法。通过在经典领域中概括所谓的加德纳方法,我们利用经典自旋玻璃的理论来得出具有猝灭模式变量的量子网络的最佳存储能力。例如,我们将方法应用于由相互作用的自旋1/2颗粒构成的开放系统量子缔合记忆,这些记忆实现了耦合的人工神经元。该系统经历了马尔可夫时间的演变,这是由于耗散性检索动力学与连贯的量子动力学竞争的。我们绘制了非平衡相图,并研究温度和哈密顿动力学对存储容量的影响。我们的方法为量子关联记忆的存储能力进行系统表征开辟了途径。
Quantum neural networks form one pillar of the emergent field of quantum machine learning. Here, quantum generalisations of classical networks realizing associative memories - capable of retrieving patterns, or memories, from corrupted initial states - have been proposed. It is a challenging open problem to analyze quantum associative memories with an extensive number of patterns, and to determine the maximal number of patterns the quantum networks can reliably store, i.e. their storage capacity. In this work, we propose and explore a general method for evaluating the maximal storage capacity of quantum neural network models. By generalizing what is known as Gardner's approach in the classical realm, we exploit the theory of classical spin glasses for deriving the optimal storage capacity of quantum networks with quenched pattern variables. As an example, we apply our method to an open-system quantum associative memory formed of interacting spin-1/2 particles realizing coupled artificial neurons. The system undergoes a Markovian time evolution resulting from a dissipative retrieval dynamics that competes with a coherent quantum dynamics. We map out the non-equilibrium phase diagram and study the effect of temperature and Hamiltonian dynamics on the storage capacity. Our method opens an avenue for a systematic characterization of the storage capacity of quantum associative memories.