论文标题

通过层次图注意的重复网络的活动感知的人类流动性预测

Activity-aware Human Mobility Prediction with Hierarchical Graph Attention Recurrent Network

论文作者

Tang, Yihong, He, Junlin, Zhao, Zhan

论文摘要

人类流动性预测是城市规划,基于位置的服务和智能运输系统中各种应用至关重要的基本任务。现有的方法通常忽略了活动信息对于推理人类的偏好和例程至关重要,或者采用时间,活动和位置之间的依赖关系的简化表示。为了解决这些问题,我们为人类流动性预测提供了分层图重复网络(HGARN)。具体而言,我们基于过去的移动性记录构建了层次图,并采用了分层图注意模块来捕获复杂的时间活性 - 依赖性。这样,Hgarn可以学习具有丰富人类旅行语义的表示形式,以在全球范围内对用户偏好进行建模。我们还提出了一个模型不足的历史增强信心(MAHEC)标签,以结合每个用户的个人级别偏好。最后,我们引入了一个时间模块,该模块采用经常性结构来共同预测用户的下一个活动及其相关位置,前者用作增强后者预测的辅助任务。为了进行模型评估,我们在反复出现的现有最新方法(即返回先前访问的位置)和探索性(即访问新的位置)设置中测试HGARN的性能。总体而言,基于两个现实世界中的人类流动性数据基准,HGARN在所有设置中都胜过其他基线。这些发现证实了人类活动在确定流动性决策中起着的重要作用,这说明了开发活动感知到智能运输系统的必要性。该研究的源代码可在https://github.com/yihongt/hgarn上获得。

Human mobility prediction is a fundamental task essential for various applications in urban planning, location-based services and intelligent transportation systems. Existing methods often ignore activity information crucial for reasoning human preferences and routines, or adopt a simplified representation of the dependencies between time, activities and locations. To address these issues, we present Hierarchical Graph Attention Recurrent Network (HGARN) for human mobility prediction. Specifically, we construct a hierarchical graph based on past mobility records and employ a Hierarchical Graph Attention Module to capture complex time-activity-location dependencies. This way, HGARN can learn representations with rich human travel semantics to model user preferences at the global level. We also propose a model-agnostic history-enhanced confidence (MAHEC) label to incorporate each user's individual-level preferences. Finally, we introduce a Temporal Module, which employs recurrent structures to jointly predict users' next activities and their associated locations, with the former used as an auxiliary task to enhance the latter prediction. For model evaluation, we test the performance of HGARN against existing state-of-the-art methods in both the recurring (i.e., returning to a previously visited location) and explorative (i.e., visiting a new location) settings. Overall, HGARN outperforms other baselines significantly in all settings based on two real-world human mobility data benchmarks. These findings confirm the important role that human activities play in determining mobility decisions, illustrating the need to develop activity-aware intelligent transportation systems. Source codes of this study are available at https://github.com/YihongT/HGARN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源