论文标题
部分可观测时空混沌系统的无模型预测
Bayes risk CTC: Controllable CTC alignment in Sequence-to-Sequence tasks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Sequence-to-Sequence (seq2seq) tasks transcribe the input sequence to a target sequence. The Connectionist Temporal Classification (CTC) criterion is widely used in multiple seq2seq tasks. Besides predicting the target sequence, a side product of CTC is to predict the alignment, which is the most probable input-long sequence that specifies a hard aligning relationship between the input and target units. As there are multiple potential aligning sequences (called paths) that are equally considered in CTC formulation, the choice of which path will be most probable and become the predicted alignment is always uncertain. In addition, it is usually observed that the alignment predicted by vanilla CTC will drift compared with its reference and rarely provides practical functionalities. Thus, the motivation of this work is to make the CTC alignment prediction controllable and thus equip CTC with extra functionalities. The Bayes risk CTC (BRCTC) criterion is then proposed in this work, in which a customizable Bayes risk function is adopted to enforce the desired characteristics of the predicted alignment. With the risk function, the BRCTC is a general framework to adopt some customizable preference over the paths in order to concentrate the posterior into a particular subset of the paths. In applications, we explore one particular preference which yields models with the down-sampling ability and reduced inference costs. By using BRCTC with another preference for early emissions, we obtain an improved performance-latency trade-off for online models. Experimentally, the proposed BRCTC reduces the inference cost of offline models by up to 47% without performance degradation and cuts down the overall latency of online systems to an unseen level.