论文标题

来自光谱监测数据的类星体积聚盘的温度波动

Temperature Fluctuations in Quasar Accretion Discs from Spectroscopic Monitoring Data

论文作者

Stone, Zachary, Shen, Yue

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Neustadt & Kochanek (2022, hereafter NK22) proposed a new method to reconstruct the temperature perturbation map (as functions of time and disc radius) of AGN accretion discs using multi-wavelength photometric light curves. We apply their technique to 100 quasars at $z=0.5-2$ from the Sloan Digital Sky Survey Reverberation Mapping project, using multi-epoch spectroscopy that covers rest-frame UV-optical continuum emission from the quasar and probes days to months timescales. Consistent with NK22 for low-redshift AGNs, we find that the dominant pattern of disc temperature perturbations is either slow inward/outward moving waves with typical amplitudes $δT/T_0\sim 10\%$ traveling at $\sim 0.01-0.1c$, with a typical radial frequency of $\sim$ 0.5 dex in $\log R$, or incoherent perturbations. In nearly none of the cases do we find clear evidence for coherent, fast outgoing temperature perturbations at the speed of light, reminiscent of the lamppost model; but such lamppost signals may be present in some quasars for limited periods of the monitoring data. Using simulated data, we demonstrate that high-fidelity temperature perturbation maps can be recovered with high-quality monitoring spectroscopy, with limited impact from seasonal gaps in the data. On the other hand, reasonable temperature perturbation maps can be reconstructed with high-cadence photometric light curves from the Vera C. Rubin Observatory Legacy Survey of Space and Time. Our findings, together with NK22, suggest that internal disc processes are the main driver for temperature fluctuations in AGN accretion discs over days to months timescales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源