论文标题
SCIONFL:高效且稳健的安全量化聚合
ScionFL: Efficient and Robust Secure Quantized Aggregation
论文作者
论文摘要
安全汇总通常用于联合学习(FL),以减轻与中央聚合器有关的隐私问题,以查看清晰中的所有参数更新。不幸的是,大多数现有的安全聚合计划忽略了两个关键的正交研究指示,旨在(i)大大减少客户服务器的通信以及(ii)减轻恶意客户的影响。但是,这两个其他属性对于促进数千甚至数百万(移动)参与者的跨设备FL至关重要。 在本文中,我们通过引入SCIONFL来团结两个研究方向,这是FL的第一个安全聚合框架,该框架有效地在量化的输入上有效运行,并同时为恶意客户提供了鲁棒性。我们的框架利用(新颖)多方计算(MPC)技术并支持多个线性(1位)量化方案,包括利用随机Hadamard Transform和Kashin的表示。 我们的理论结果得到了广泛的评估。我们表明,与授权中的传输和处理量化的更新相比,没有针对客户的间接费用,服务器的中等开销,我们获得了标准FL基准的可比精度。此外,我们证明了框架与最先进的中毒攻击的鲁棒性。
Secure aggregation is commonly used in federated learning (FL) to alleviate privacy concerns related to the central aggregator seeing all parameter updates in the clear. Unfortunately, most existing secure aggregation schemes ignore two critical orthogonal research directions that aim to (i) significantly reduce client-server communication and (ii) mitigate the impact of malicious clients. However, both of these additional properties are essential to facilitate cross-device FL with thousands or even millions of (mobile) participants. In this paper, we unite both research directions by introducing ScionFL, the first secure aggregation framework for FL that operates efficiently on quantized inputs and simultaneously provides robustness against malicious clients. Our framework leverages (novel) multi-party computation (MPC) techniques and supports multiple linear (1-bit) quantization schemes, including ones that utilize the randomized Hadamard transform and Kashin's representation. Our theoretical results are supported by extensive evaluations. We show that with no overhead for clients and moderate overhead for the server compared to transferring and processing quantized updates in plaintext, we obtain comparable accuracy for standard FL benchmarks. Moreover, we demonstrate the robustness of our framework against state-of-the-art poisoning attacks.