论文标题
叶:对比度学习中时间序列生物行为数据的观点
LEAVES: Learning Views for Time-Series Biobehavioral Data in Contrastive Learning
论文作者
论文摘要
对比学习已被用作一种有前途的自我监督学习方法,可以从未标记的数据中提取有意义的表示。这些方法中的大多数都利用了数据提升技术来从原始输入中创建各种视图。但是,优化增强及其参数以在对比学习框架中生成更有效的观点通常是资源密集型且耗时的。尽管已经提出了几种策略来自动在计算机视觉中产生新的视图,但其他领域的研究(例如时间序列生物行为数据)仍然有限。在本文中,我们引入了一个简单而强大的模块,用于应用于时间序列的对比度学习框架,用于自动视图,这对于现代医疗保健是必不可少的,它称为时间序列数据(叶子)的学习视图。该提议的模块采用对抗性培训来学习对比度学习框架内的增强超参数。我们使用两个众所周知的对比学习框架,即SIMCLR和BYOL评估方法对多个时间序列数据集的功效。在四个不同的生物行为数据集中,叶子仅需要大约20个可学习的参数 - 比ViewMaker(如ViewMaker)所需的约580K参数少,这是一个先前提议的对抗性训练的卷积模块,而在对比学习中,同时可以实现与现有基线方法的竞争性和卓越性能。至关重要的是,这些效率的提高是无需大量手动超参数调整而获得的,这使得叶子特别适合需要准确性和实用性的大规模或实时医疗保健应用。
Contrastive learning has been utilized as a promising self-supervised learning approach to extract meaningful representations from unlabeled data. The majority of these methods take advantage of data-augmentation techniques to create diverse views from the original input. However, optimizing augmentations and their parameters for generating more effective views in contrastive learning frameworks is often resource-intensive and time-consuming. While several strategies have been proposed for automatically generating new views in computer vision, research in other domains, such as time-series biobehavioral data, remains limited. In this paper, we introduce a simple yet powerful module for automatic view generation in contrastive learning frameworks applied to time-series biobehavioral data, which is essential for modern health care, termed learning views for time-series data (LEAVES). This proposed module employs adversarial training to learn augmentation hyperparameters within contrastive learning frameworks. We assess the efficacy of our method on multiple time-series datasets using two well-known contrastive learning frameworks, namely SimCLR and BYOL. Across four diverse biobehavioral datasets, LEAVES requires only approximately 20 learnable parameters -- dramatically fewer than the about 580k parameters demanded by frameworks like ViewMaker, a previously proposed adversarially trained convolutional module in contrastive learning, while achieving competitive and often superior performance to existing baseline methods. Crucially, these efficiency gains are obtained without extensive manual hyperparameter tuning, which makes LEAVES particularly suitable for large-scale or real-time healthcare applications that demand both accuracy and practicality.