论文标题
模型和有效的协变量调整,用于群集随机实验
Model-robust and efficient covariate adjustment for cluster-randomized experiments
论文作者
论文摘要
群集随机实验越来越多地用于评估常规实践条件下的干预措施,研究人员通常采用基于模型的方法,并在统计分析中进行协方差调整。但是,基于模型的协变量调整的有效性尚不清楚工作模型何时被指定,从而导致估计性和偏见风险的歧义。在本文中,我们首先适应了两种基于模型的方法,即广义估计方程和线性混合模型,并具有加权G-Compuntion,以实现对群集平均水平和个体平均处理效果的强大推断。为了进一步克服基于模型的协变量调整方法的局限性,我们提出了每个估计值的有效估计器,该估计器允许灵活的协变量调整,并另外解决了取决于治疗分配和其他群集特性的群集大小的变化。这种群集大小的变化经常发生后,如果忽略,可能会导致基于模型的估计器的偏差。对于我们提出的有效协变量调整的估计量,我们证明,当通过机器学习算法始终如一地估算滋扰功能时,估计量是一致的,渐近的正常且有效的。当通过参数工作模型估算滋扰函数时,估计器是三重稳定的。对三个现实世界群集随机实验的仿真研究和分析表明,所提出的方法优于现有替代方法。
Cluster-randomized experiments are increasingly used to evaluate interventions in routine practice conditions, and researchers often adopt model-based methods with covariate adjustment in the statistical analyses. However, the validity of model-based covariate adjustment is unclear when the working models are misspecified, leading to ambiguity of estimands and risk of bias. In this article, we first adapt two conventional model-based methods, generalized estimating equations and linear mixed models, with weighted g-computation to achieve robust inference for cluster-average and individual-average treatment effects. To further overcome the limitations of model-based covariate adjustment methods, we propose an efficient estimator for each estimand that allows for flexible covariate adjustment and additionally addresses cluster size variation dependent on treatment assignment and other cluster characteristics. Such cluster size variations often occur post-randomization and, if ignored, can lead to bias of model-based estimators. For our proposed efficient covariate-adjusted estimator, we prove that when the nuisance functions are consistently estimated by machine learning algorithms, the estimator is consistent, asymptotically normal, and efficient. When the nuisance functions are estimated via parametric working models, the estimator is triply-robust. Simulation studies and analyses of three real-world cluster-randomized experiments demonstrate that the proposed methods are superior to existing alternatives.