论文标题
多摄像机系统的通用视觉大满贯框架的设计和评估
Design and Evaluation of a Generic Visual SLAM Framework for Multi-Camera Systems
论文作者
论文摘要
已显示多相机系统可提高大满贯估计的准确性和鲁棒性,但最先进的大满贯系统主要支持单眼或立体声设置。本文提出了一个通用的稀疏视觉大满贯框架,能够在任何数量的摄像机上运行和任何布置。我们的SLAM系统使用广义相机模型,该模型使我们能够将任意的多摄像头系统表示为单个成像设备。此外,它通过在钻机中的相机上提取交叉匹配的特征来利用重叠的视野(FOV)。这限制了摄像机数量的线性增加数量,并保持了计算负载,同时可以准确地表示场景。我们在室内和室外数据集上的准确性,鲁棒性和运行时间来评估我们的方法,其中包括具有挑战性的现实环境,例如狭窄的走廊,无特征空间和动态对象。我们表明,我们的系统可以适应不同的相机配置,并允许为典型的机器人应用程序实时执行。最后,我们基于关键设计参数的影响 - 相机的数量和其FOV之间的重叠(以定义SLAM的相机配置)。我们所有的软件和数据集都可以自由地用于进一步研究。
Multi-camera systems have been shown to improve the accuracy and robustness of SLAM estimates, yet state-of-the-art SLAM systems predominantly support monocular or stereo setups. This paper presents a generic sparse visual SLAM framework capable of running on any number of cameras and in any arrangement. Our SLAM system uses the generalized camera model, which allows us to represent an arbitrary multi-camera system as a single imaging device. Additionally, it takes advantage of the overlapping fields of view (FoV) by extracting cross-matched features across cameras in the rig. This limits the linear rise in the number of features with the number of cameras and keeps the computational load in check while enabling an accurate representation of the scene. We evaluate our method in terms of accuracy, robustness, and run time on indoor and outdoor datasets that include challenging real-world scenarios such as narrow corridors, featureless spaces, and dynamic objects. We show that our system can adapt to different camera configurations and allows real-time execution for typical robotic applications. Finally, we benchmark the impact of the critical design parameters - the number of cameras and the overlap between their FoV that define the camera configuration for SLAM. All our software and datasets are freely available for further research.