论文标题

稳定的2D BoussinesQ和3D Euler方程的稳定自相似爆炸,具有光滑的数据i:分析

Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data I: Analysis

论文作者

Chen, Jiajie, Hou, Thomas Y.

论文摘要

受到潜在的3D Euler奇异性的数值证据的启发{luo2014Potient,luo2013Potiently-2},我们证明了2D Boussinesq和3D轴对称的Euler方程的有限时间爆炸,并具有有限能量和边界的平滑初始数据。在证明具有平滑初始数据的3D Euler方程的有限时间爆炸时,存在一些必不可少的困难。必不可少的困难之一是控制许多似乎没有任何阻尼效果的非本地术语。另一个必不可少的困难是,如果我们使用加权$ l^2 $或$ h^k $估计值,则边界的强大对流引入了扰动的大生长因子。我们通过使用加权$ l^\ infty $ norm和加权$ c^{1/2} $ norm的组合来克服这一困难,并使用内核的对称属性以及最佳运输中的某些技术产生尖锐的功能不平等。此外,我们将线性化运算符分解为领先的订单操作员以及有限的等级运算符。领先的订单运算符的设计方式使我们可以获得尖锐的稳定性估计。有限等级运算符对线性稳定性的贡献可以通过在时空中构建近似解决方案来估算。这使我们能够建立近似自相似曲线的非线性稳定性,并证明具有平滑的初始数据和边界的2D Boussinesq和3D Euler方程的几乎相似的爆炸。

Inspired by the numerical evidence of a potential 3D Euler singularity \cite{luo2014potentially,luo2013potentially-2}, we prove finite time blowup of the 2D Boussinesq and 3D axisymmetric Euler equations with smooth initial data of finite energy and boundary. There are several essential difficulties in proving finite time blowup of the 3D Euler equations with smooth initial data. One of the essential difficulties is to control a number of nonlocal terms that do not seem to offer any damping effect. Another essential difficulty is that the strong advection normal to the boundary introduces a large growth factor for the perturbation if we use weighted $L^2$ or $H^k$ estimates. We overcome this difficulty by using a combination of a weighted $L^\infty$ norm and a weighted $C^{1/2}$ norm, and develop sharp functional inequalities using the symmetry properties of the kernels and some techniques from optimal transport. Moreover we decompose the linearized operator into a leading order operator plus a finite rank operator. The leading order operator is designed in such a way that we can obtain sharp stability estimates. The contribution from the finite rank operator to linear stability can be estimated by constructing approximate solutions in space-time. This enables us to establish nonlinear stability of the approximate self-similar profile and prove stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth initial data and boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源