论文标题

令人讨厌的设施位置的有效算法或圈子

Efficient Algorithms for Obnoxious Facility Location on a Line Segment or Circle

论文作者

Zhang, Bowei

论文摘要

我们研究了平面上令人讨厌的设施位置问题的不同限制变化。第一个是线段(COFL线)问题上受约束的令人讨厌的设施位置。我们为此问题提供了一种有效的算法,该算法在$ O(n ^ 2 \ log k + k + n \ log k \ log(n ^ 2 + k))$ time中执行。我们的结果改善了$​​ o((nk)^2 \ log(nk) +(n + k)\ log(nk))$的最著名结果,由Singireddy和Basappa \ cite \ cite {Singireddydydy2022dispersing}获得的时间。我们还研究了必须将设施放在给定圆(COFL-CIRC)问题上的约束(COFL-CIRC)上的限制性圆圈(COFL-CIRC)上的相同问题。我们为此问题提供了一种有效的算法,该算法在$ O(n ^ 2 \ log k + k + n \ log k \ log(n ^ 2 + k))$ time中执行。我们的结果改善了$​​ o((nk)^2 \ log(nk) +(n + k)\ log(nk))$的最著名结果,由Singireddy和Basappa \ cite \ cite {Singireddydydy2022dispersing}获得的时间。我们研究的第三个问题是Min-sum令人讨厌的设施位置(MOFL)问题。我们提供了一种有效的算法,该算法在$ O(NK \CDOTα(nk)\ log^3 {nk})$时间中执行,其中$α(。)$是$α(。)$是倒数的Ackermann函数。最著名的先前结果是Singireddy和Basappa \ cite {Singireddy2022Dispersing}获得的$ O(n^3k)$时间。

We study different restricted variations of the obnoxious facility location problem on a plane. The first is the constrained obnoxious facility location on a line segment (COFL-Line) problem. We provide an efficient algorithm for this problem that executes in $O(n ^ 2 \log k + n \log k \log (n^2 + k))$ time. Our result improves on the best known result of $O((nk)^2 \log(nk) + (n + k) \log (nk))$ time obtained by Singireddy and Basappa\cite{singireddy2022dispersing}. We also study the same problem where the facilities must be placed on a given circle (the constrained obnoxious facility location on a circle (COFL-Circ) problem). We provide an efficient algorithm for this problem that executes in $O(n ^ 2 \log k + n \log k \log (n^2 + k))$ time. Our result improves on the best known result of $O((nk)^2 \log(nk) + (n + k) \log (nk))$ time obtained by Singireddy and Basappa\cite{singireddy2022dispersing}. The third problem we study is the min-sum obnoxious facility location (MOFL) problem.We provide an efficient algorithm that executes in $O(nk\cdot α(nk) \log^3 {nk})$ time, where $α(.)$ is the inverse Ackermann function. The best known previous result is an $O(n^3k)$ time obtained by Singireddy and Basappa\cite{singireddy2022dispersing}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源