论文标题

大型3D体积的特征自适应互动阈值

Feature-Adaptive Interactive Thresholding of Large 3D Volumes

论文作者

Lang, Thomas, Sauer, Tomas

论文摘要

阈值是体积图像处理中最广泛使用的分割方法,其侧重呈侧面的性质使其对于快速处理大型三维样品的吸引力。但是,在存在伪影,测量噪声或灰度值波动的情况下,全球阈值通常无法正确提取组件。本文介绍了功能自适应交互式阈值(Faith),这是一种阈值技术,该技术包含(几何)功能,本地处理和交互式用户输入,以克服这些限制。鉴于适合大多数地区的全局阈值,信仰使用交互选择的种子体素来识别关键区域,在该区域中,该阈值将根据从这些体素周围的本地环境中计算出的特征在本地进行调整。因此,域专家知识和严格的数学模型的结合可以通过直观的用户交互来实现一种非常敏感的局部阈值方式。定性分析表明,所提出的模型能够克服通常以平整阈值发生的局限性,同时保持足够有效的效率,也可以分割大容量。

Thresholding is the most widely used segmentation method in volumetric image processing, and its pointwise nature makes it attractive for the fast handling of large three-dimensional samples. However, global thresholds often do not properly extract components in the presence of artifacts, measurement noise or grayscale value fluctuations. This paper introduces Feature-Adaptive Interactive Thresholding (FAITH), a thresholding technique that incorporates (geometric) features, local processing and interactive user input to overcome these limitations. Given a global threshold suitable for most regions, FAITH uses interactively selected seed voxels to identify critical regions in which that threshold will be adapted locally on the basis of features computed from local environments around these voxels. The combination of domain expert knowledge and a rigorous mathematical model thus enables a very exible way of local thresholding with intuitive user interaction. A qualitative analysis shows that the proposed model is able to overcome limitations typically occuring in plain thresholding while staying efficient enough to also allow the segmentation of big volumes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源