论文标题

普遍的公制树的布置和礼服人

Generalized metric tree arrangements and Dressians

论文作者

Tewari, Ayush Kumar

论文摘要

公制的树木和公制树的布置索引圆锥圆锥体中的多面体风扇结构分别是DR(2,n)$和$ dr(3,n)$。我们介绍了广义度量树布置的概念,该概念将点在$ dr(k,n)$中参数化,并将以前已知的结果扩展到$ dr(k,n)$,同时提供了这些广义度量树布置的明确示例。我们研究了正装式$ dr _ {> 0}(3,n)$中锥的邻接性,并引入了通用的白头动作,这为相关的度量树的布置而言,为$ dr _ {> 0}(3,n)$的最大圆锥体提供了条件。

Metric trees and metric tree arrangements index cones in the polyhedral fan structure in the Dressian $Dr(2,n)$ and $Dr(3,n)$ respectively. We introduce the notion of generalized metric tree arrangements which parameterize points in $Dr(k,n)$ and extend previously known results to $Dr(k,n)$ along with providing explicit examples of these generalized metric tree arrangements. We study the adjacency of cones in the positive Dressian $Dr_{>0}(3, n)$ and introduce generalized Whitehead moves which provide a condition for adjacency of maximal cones in $Dr_{>0}(3,n)$ in terms of the associated metric tree arrangements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源