论文标题
用于实时识别错误数据注入攻击的流媒体学习方法
A Stream Learning Approach for Real-Time Identification of False Data Injection Attacks in Cyber-Physical Power Systems
论文作者
论文摘要
本文提出了一个新颖的数据驱动框架,以帮助系统状态估计,当电源系统处于无法观察到的错误数据注射攻击下时。提出的框架动态检测并分类了错误的数据注入攻击。然后,它使用获得的信息检索控制信号。此过程是在三个主要模块中完成的,具有新颖的设计,用于检测,分类和控制信号检索。检测模块监视相量测量的历史变化,并捕获由对复杂平面攻击引起的任何偏差模式。这种方法可以帮助揭示攻击的特征,包括注入的虚假数据的方向,大小和比率。使用此信息,信号检索模块可以轻松恢复原始控制信号并删除注入的错误数据。有关攻击类型的更多信息,可以通过分类器模块获得。拟议的合奏学习者与严峻的学习条件兼容,包括缺乏标记的数据,概念漂移,概念进化,重复的类别以及与外部更新的独立性。拟议的小说分类器可以在所有这些严厉的学习条件下动态学习并对攻击进行分类。介绍的框架将评估W.R.T.从纽约中部电力系统捕获的现实世界数据。获得的结果表明所提出的框架的功效和稳定性。
This paper presents a novel data-driven framework to aid in system state estimation when the power system is under unobservable false data injection attacks. The proposed framework dynamically detects and classifies false data injection attacks. Then, it retrieves the control signal using the acquired information. This process is accomplished in three main modules, with novel designs, for detection, classification, and control signal retrieval. The detection module monitors historical changes in phasor measurements and captures any deviation pattern caused by an attack on a complex plane. This approach can help to reveal characteristics of the attacks including the direction, magnitude, and ratio of the injected false data. Using this information, the signal retrieval module can easily recover the original control signal and remove the injected false data. Further information regarding the attack type can be obtained through the classifier module. The proposed ensemble learner is compatible with harsh learning conditions including the lack of labeled data, concept drift, concept evolution, recurring classes, and independence from external updates. The proposed novel classifier can dynamically learn from data and classify attacks under all these harsh learning conditions. The introduced framework is evaluated w.r.t. real-world data captured from the Central New York Power System. The obtained results indicate the efficacy and stability of the proposed framework.