论文标题
电子介导的两个遥远的宏观铁磁体的纠缠在一个非平衡的旋转装置中
Electron-mediated entanglement of two distant macroscopic ferromagnets within a nonequilibrium spintronic device
论文作者
论文摘要
使用量子自旋转移扭矩的新生概念[A. Zholud等人,物理。莱特牧师。 {\ bf 119},257201(2017); M. D.Petrović{\ em等人},物理学。修订版x {\ bf 11},021062(2021)],我们证明可以利用一个电流脉冲,以纠缠两个空间分离的铁磁体(FMS)的量子局部旋转,这些旋转最初未进入。设想的设置包括一个自旋极光剂(FM $ _P $)和一个由普通金属(NM)垫片分开的自旋分析仪(FM $ _A $)FM层。将电流脉冲注射到设备中导致多体状态的时间依赖性叠加,其特征在于两个遥远的FM层的自由度之间的高度纠缠。非平衡动力学是由于旋转角动量通过量子旋转机制转移到局部旋转,该机制即使对于{\ em colinear in colinear却是对抗的} fm $ _p $ _p $ _p $ _p $ _p $ _p $ _a $ _a $ _a $ _a $磁磁的排列(这种情况,这种情况是常规的旋转旋转to spiner-quante sisteal is bissents nise nes nise nise nise niseque。我们通过跟踪全密度矩阵的时间进化并分析了随着时间的推移的相互对数消极情绪的堆积来量化FM层之间产生的混合状态纠缠。还考虑了由于在有限温度下与玻感浴的耦合,使用多电子电流脉冲以及对旋转数量的依赖,以确定我们的预测在现实条件下的鲁棒性。最后,我们提出了一种利用超快X射线光谱的``电流泵/X射线 - 探针''方案,可以通过提取其与时间相关的量子渔民信息来见证FM层的非平衡和瞬态纠缠。
Using the nascent concept of quantum spin-transfer torque [A. Zholud et al., Phys. Rev. Lett. {\bf 119}, 257201 (2017); M. D. Petrović {\em et al.}, Phys. Rev. X {\bf 11}, 021062 (2021)], we demonstrate that a current pulse can be harnessed to entangle quantum localized spins of two spatially separated ferromagnets (FMs) which are initially unentangled. The envisaged setup comprises a spin-polarizer (FM$_p$) and a spin-analyzer (FM$_a$) FM layers separated by normal metal (NM) spacer. The injection of a current pulse into the device leads to a time-dependent superposition of many-body states characterized by a high degree of entanglement between the spin degrees of freedom of the two distant FM layers. The non-equilibrium dynamics are due to the transfer of spin angular momentum from itinerant electrons to the localized spins via a quantum spin-torque mechanism that remains active even for {\em collinear but antiparallel} arrangements of the FM$_p$ and FM$_a$ magnetizations (a situation in which the conventional spin-torque is absent). We quantify the mixed-state entanglement generated between the FM layers by tracking the time-evolution of the full density matrix and analyzing the build-up of the mutual logarithmic negativity over time. The effect of decoherence and dissipation in the FM layers due to coupling to bosonic baths at finite temperature, the use of multi-electron current pulses and the dependence on the number of spins are also considered in an effort to ascertain the robustness of our predictions under realistic conditions. Finally, we propose a ``current-pump/X-ray-probe'' scheme, utilizing ultrafast X-ray spectroscopy, that can witness nonequilibrium and transient entanglement of the FM layers by extracting its time-dependent quantum Fisher information.