论文标题

基于注意的太阳动力学天文台上的基于注意力的生成神经图像压缩

Attention-Based Generative Neural Image Compression on Solar Dynamics Observatory

论文作者

Zafari, Ali, Khoshkhahtinat, Atefeh, Mehta, Piyush M., Nasrabadi, Nasser M., Thompson, Barbara J., da Silva, Daniel, Kirk, Michael S. F.

论文摘要

NASA的太阳能动力学天文台(SDO)任务每天从其地球同步轨道中收集1.4个数据。 SDO数据包括在不同波长下捕获的太阳图像,其主要科学目标是了解有关太阳的动态过程。最近,端到端优化的人工神经网络(ANN)在执行图像压缩方面表现出巨大的潜力。基于ANN的压缩方案的表现优于常规手工设计算法,用于有损和无损图像压缩。我们已经设计了一种基于临时的ANN的图像压缩方案,以减少在研究太阳能动力学的空间任务中所需的数据量。在这项工作中,我们提出了一个注意模块,以利用受对抗训练的神经图像压缩网络中的局部和非本地注意机制。我们还展示了该神经图像压缩机的卓越感知质量。我们提出的用于压缩从SDO航天器下载的图像的算法在速度差异方面的性能要比当前流行的使用图像压缩编解码器(例如JPEG和JPEG2000)更好。此外,我们已经表明,所提出的方法优于最先进的有损转换编码压缩编解码器,即bpg。

NASA's Solar Dynamics Observatory (SDO) mission gathers 1.4 terabytes of data each day from its geosynchronous orbit in space. SDO data includes images of the Sun captured at different wavelengths, with the primary scientific goal of understanding the dynamic processes governing the Sun. Recently, end-to-end optimized artificial neural networks (ANN) have shown great potential in performing image compression. ANN-based compression schemes have outperformed conventional hand-engineered algorithms for lossy and lossless image compression. We have designed an ad-hoc ANN-based image compression scheme to reduce the amount of data needed to be stored and retrieved on space missions studying solar dynamics. In this work, we propose an attention module to make use of both local and non-local attention mechanisms in an adversarially trained neural image compression network. We have also demonstrated the superior perceptual quality of this neural image compressor. Our proposed algorithm for compressing images downloaded from the SDO spacecraft performs better in rate-distortion trade-off than the popular currently-in-use image compression codecs such as JPEG and JPEG2000. In addition we have shown that the proposed method outperforms state-of-the art lossy transform coding compression codec, i.e., BPG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源