论文标题

delzant和amenitic多边形的填料密度

Packing Densities of Delzant and Semitoric Polygons

论文作者

Du, Yu, Kosmacher, Gabriel, Liu, Yichen, Massman, Jeff, Palmer, Joseph, Thieme, Timothy, Wu, Jerry, Zhang, Zheyu

论文摘要

分别利用了与Delzant和Delzant和Semitoric多边形的4维复合系统和半牙本化的整合系统之间的关系,我们开发了通过专门与多边形合作来计算这些系统的某些均等堆积密度和这些系统的等效能力的技术。这扩展了Pelayo和Pelayo-Schmidt的结果。我们计算了几个重要示例的密度,还使用我们的技术来解决模棱两可的半牙本质完美填料问题,即,我们列出了所有的半牙本多边形,相关的半牙本系统可以接受等值的包装,以填充除级别的一组量度为零的量度。本文还可以简洁且可访问的介绍Delzant和Dimension四。

Exploiting the relationship between 4-dimensional toric and semitoric integrable systems with Delzant and semitoric polygons, respectively, we develop techniques to compute certain equivariant packing densities and equivariant capacities of these systems by working exclusively with the polygons. This expands on results of Pelayo and Pelayo-Schmidt. We compute the densities of several important examples and we also use our techniques to solve the equivariant semitoric perfect packing problem, i.e., we list all semitoric polygons for which the associated semitoric system admits an equivariant packing which fills all but a set of measure zero of the manifold. This paper also serves as a concise and accessible introduction to Delzant and semitoric polygons in dimension four.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源