论文标题

在呼吸运动(CMRXMOTION)下的极端心脏MRI分析挑战

The Extreme Cardiac MRI Analysis Challenge under Respiratory Motion (CMRxMotion)

论文作者

Wang, Shuo, Qin, Chen, Wang, Chengyan, Wang, Kang, Wang, Haoran, Chen, Chen, Ouyang, Cheng, Kuang, Xutong, Dai, Chengliang, Mo, Yuanhan, Shi, Zhang, Dai, Chenchen, Chen, Xinrong, Wang, He, Bai, Wenjia

论文摘要

心脏磁共振(CMR)成像的质量容易受到呼吸运动伪影的影响。面对现实世界呼吸运动伪像的自动分割技术的模型鲁棒性尚不清楚。该手稿描述了在呼吸运动(CMRXMOTION挑战)下极端心脏MRI分析挑战的设计。挑战旨在建立一个公共基准数据集,以评估呼吸运动对图像质量的影响并检查分割模型的鲁棒性。挑战招募了40名健康志愿者,在一次成像访问期间执行不同的呼吸含量行为,从而获得了配对的电影成像和工件。放射科医生评估了图像质量,并注释了呼吸运动伪像的水平。对于那些具有诊断质量的图像,放射科医生进一步细分了左心室,左心室心肌和右心室。训练集(20名志愿者)以及注释的图像将发布给挑战参与者,以开发自动图像质量评估模型(任务1)和自动分割模型(任务2)。验证集(5名志愿者)的图像已发布给挑战参与者,但拒绝注释以在线评估提交的预测。测试集(15名志愿者)的图像和注释都被固定,仅用于离线评估已提交的容器化码头。图像质量评估任务由Cohen的Kappa统计数据进行定量评估,分段任务由骰子得分和Hausdorff距离进行评估。

The quality of cardiac magnetic resonance (CMR) imaging is susceptible to respiratory motion artifacts. The model robustness of automated segmentation techniques in face of real-world respiratory motion artifacts is unclear. This manuscript describes the design of extreme cardiac MRI analysis challenge under respiratory motion (CMRxMotion Challenge). The challenge aims to establish a public benchmark dataset to assess the effects of respiratory motion on image quality and examine the robustness of segmentation models. The challenge recruited 40 healthy volunteers to perform different breath-hold behaviors during one imaging visit, obtaining paired cine imaging with artifacts. Radiologists assessed the image quality and annotated the level of respiratory motion artifacts. For those images with diagnostic quality, radiologists further segmented the left ventricle, left ventricle myocardium and right ventricle. The images of training set (20 volunteers) along with the annotations are released to the challenge participants, to develop an automated image quality assessment model (Task 1) and an automated segmentation model (Task 2). The images of validation set (5 volunteers) are released to the challenge participants but the annotations are withheld for online evaluation of submitted predictions. Both the images and annotations of the test set (15 volunteers) were withheld and only used for offline evaluation of submitted containerized dockers. The image quality assessment task is quantitatively evaluated by the Cohen's kappa statistics and the segmentation task is evaluated by the Dice scores and Hausdorff distances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源