论文标题
$ \ mathrm {cat}(0)$ Square Complextes上的随机组动作
Random Group Actions on $\mathrm{CAT}(0)$ Square Complexes
论文作者
论文摘要
我们将Jahncke的想法从树木概括为正方形的建筑群。我们介绍了$ \ mathrm {cat}(0)$ Square Complextes中的进度概念。使用进步,我们能够建立在Dahmani-Guirardel-przytycki的证明策略上,以显示一个随机组在$ \ MATHRM {CAT}(0)$ Square Complex上具有七个或更多发电机的动作,具有全球固定点。
We generalize ideas of Jahncke from trees to square complexes. We introduce the notion of progression in $\mathrm{CAT}(0)$ square complexes. Using progression, we are able to build on the proof strategy of Dahmani-Guirardel-Przytycki to show any action of a random group with seven or more generators on a $\mathrm{CAT}(0)$ square complex has a global fixed point.