论文标题

ECG信号分类的两流网络

Two-stream Network for ECG Signal Classification

论文作者

Hou, Xinyao, Qin, Shengmei, Su, Jianbo

论文摘要

心电图(ECG)是一种医学监测心脏活动的技术,是鉴定心血管疾病的重要方法。但是,分析ECG数据数量的增加会消耗大量医疗资源。本文探讨了一种基于ECG的多类心跳类型的自动分类的有效算法。大多数基于神经网络的方法针对单个心跳,忽略了时间序列中嵌入的秘密。 ECG信号具有时间变化和独特的个体特征,这意味着在不同身体状况下患者的相同类型的ECG信号在不同。本文使用了两流式体系结构,并基于此提供了增强的ECG识别版本。该体系结构实现了整体心电图和个体心跳的分类,并结合了已识别的时间流网络。确定的网络用于提取单个心跳的特征,而时间网络旨在提取心跳之间的时间相关性。 MIT-BIH心律失常数据库的结果表明,所提出的算法的精度为99.38 \%。此外,所提出的算法在现实生活中的大量数据上达到了88.07 \%的阳性准确性,这表明所提出的算法可以有效地对不同类别的心跳分类具有高诊断性能。

Electrocardiogram (ECG), a technique for medical monitoring of cardiac activity, is an important method for identifying cardiovascular disease. However, analyzing the increasing quantity of ECG data consumes a lot of medical resources. This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG. Most neural network based methods target the individual heartbeats, ignoring the secrets embedded in the temporal sequence. And the ECG signal has temporal variation and unique individual characteristics, which means that the same type of ECG signal varies among patients under different physical conditions. A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this. The architecture achieves classification of holistic ECG signal and individual heartbeat and incorporates identified and temporal stream networks. Identified networks are used to extract features of individual heartbeats, while temporal networks aim to extract temporal correlations between heartbeats. Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38\%. In addition, the proposed algorithm reaches an 88.07\% positive accuracy on massive data in real life, showing that the proposed algorithm can efficiently categorize different classes of heartbeat with high diagnostic performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源