论文标题

扭曲器空间的高旋转自动偶型山和重力

Higher-Spin Self-Dual Yang-Mills and Gravity from the twistor space

论文作者

Herfray, Yannick, Krasnov, Kirill, Skvortsov, Evgeny

论文摘要

我们将最近提出的高自旋自动偶义杨木(SDYM)和重力(SDGR)的理论提升到扭曲器空间。我们发现,这些理论的曲折配方最自然的空间不是在投影中,而是在完整的扭曲空间中,这是旋转束束的总空间,这是4维歧管上的纺纱束。在SDYM的较高旋转延伸的情况下,我们证明了病房定理的类似物,并表明磁场方程的解决方案与扭曲器空间上的全体形态矢量捆绑包之间存在一对一的对应关系。在SDGR的高旋转延伸的情况下,我们表明表明,在弯曲器空间上的磁场方程解决方案与ehresmann连接之间有一对一的对应关系,其水平分布是泊松,其曲率可分解。然后,这些数据在扭曲器空间上定义了一个几乎可以集成的结构。

We lift the recently proposed theories of higher-spin self-dual Yang-Mills (SDYM) and gravity (SDGR) to the twistor space. We find that the most natural room for the twistor formulation of these theories is not in the projective, but in the full twistor space, which is the total space of the spinor bundle over the 4-dimensional manifold. In the case of higher-spin extension of the SDYM we prove an analogue of the Ward theorem, and show that there is a one-to-one correspondence between the solutions of the field equations and holomorphic vector bundles over the twistor space. In the case of the higher-spin extension of SDGR we show show that there is a one-to-one correspondence between solutions of the field equations and Ehresmann connections on the twistor space whose horizontal distributions are Poisson, and whose curvature is decomposable. These data then define an almost complex structure on the twistor space that is integrable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源