论文标题

在SATCOM梁放置问题上量子退火的有效汉密尔顿减少

Efficient Hamiltonian Reduction for Quantum Annealing on SatCom Beam Placement Problem

论文作者

Dinh, Thinh Q., Dau, Son Hoang, Lagunas, Eva, Chatzinotas, Symeon

论文摘要

光束放置(BP)是低地球轨道(LEO)卫星通信(SATCOM)系统中的一个众所周知的问题,可以将其建模为NP-HARD集团覆盖率问题。最近,量子计算已成为一种新技术,它通过制定二次不受约束的二进制优化(QUBO)来彻底改变如何解决具有挑战性的优化问题,然后将哈密顿量作为量子计算机的输入。在本文中,我们研究了如何使用量子计算来解决BP问题。但是,由于硬件资源有限,现有的量子计算机无法应对大型优化空间。因此,我们提出了一种有效的哈密顿还原方法,该方法允许量子处理器解决LEO系统中遇到的大型BP实例。我们使用美国船只位置的实际数据集对实际量子计算机(D-WAVE优势)进行模拟。数值结果表明,我们的算法通过允许现有的量子退火器求解较大的BP实例,同时保持高溶液质量,胜过D波的商业化解决方案。尽管从理论上讲,量子计算无法克服BP问题的硬度,但这项工作为在卫星优化问题中应用量子计算做出了尽早努力,尤其是作为集团覆盖/图形着色问题的应用程序。

Beam Placement (BP) is a well-known problem in Low-Earth Orbit (LEO) satellite communication (SatCom) systems, which can be modelled as an NP-hard clique cover problem. Recently, quantum computing has emerged as a novel technology which revolutionizes how to solve challenging optimization problems by formulating Quadratic Unconstrained Binary Optimization (QUBO), then preparing Hamiltonians as inputs for quantum computers. In this paper, we study how to use quantum computing to solve BP problems. However, due to limited hardware resources, existing quantum computers are unable to tackle large optimization spaces. Therefore, we propose an efficient Hamiltonian Reduction method that allows quantum processors to solve large BP instances encountered in LEO systems. We conduct our simulations on real quantum computers (D-Wave Advantage) using a real dataset of vessel locations in the US. Numerical results show that our algorithm outperforms commercialized solutions of D-Wave by allowing existing quantum annealers to solve 17.5 times larger BP instances while maintaining high solution quality. Although quantum computing cannot theoretically overcome the hardness of BP problems, this work contributes early efforts to applying quantum computing in satellite optimization problems, especially applications formulated as clique cover/graph coloring problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源