论文标题
单障碍安德森模型与铁磁浴的空间自旋旋转相关性
Spatial spin-spin correlations of the single-impurity Anderson model with a ferromagnetic bath
论文作者
论文摘要
我们使用LACROIX在LACROIX的基础下,通过一个维度的杂物模型来研究一个维度杂质模型,通过一个维度的杂质模型,研究了近相度杂质模型的近核效应与铁磁性之间的相互作用。计算相等的空间自旋旋转相关函数(SSCF)。对于自旋 - 非极化传导电子的情况,它与密度基质重质化组(DMRG)的结果定性一致。对于具有部分自旋偏振电气的系统,由于与两个旋转传导电子的Fermi表面相关的两个Friedel振荡,SSCF包膜的振荡出现了。该期间与磁场$ H $的倒数成正比。提出了一个拟合公式,可以完美地拟合SSCF在短期和远程区域中的数值结果。对于足够大的浴缸自旋极化,在集成的SSCF的曲线中出现了凸起。它标志着被抑制的Kondo云与偏光浴场之间的边界。
We investigate the interplay between the Kondo effect and the ferromagnetism by an one dimension Anderson impurity model with a spin partially polarized bath, using the projective truncation approximation under Lacroix basis.The equal-time spatial spin-spin correlation function (SSCF) is calculated. For the case of spin-unpolarized conduction electrons, it agrees qualitatively with the results from density matrix renormalization group (DMRG). For system with partially spin-polarized conduction electrons, an oscillation in the envelope of SSCF emerges due to the beating of two Friedel oscillations associated to two spin-split Fermi surfaces of conduction electrons. The period is proportional to the inverse of magnetic field $h$. A fitting formula is proposed to perfectly fits the numerical results of SSCF in both the short- and long-range regions. For large enough bath spin polarization, a bump appears in the curve of the integrated SSCF. It marks the boundary between the suppressed Kondo cloud and the polarized bath sites.